
Institute of Theoretical Informatics
Algorithmics

Parallel Super Scalar String Sample Sort
Timo Bingmann and Peter Sanders

KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu

1. Sorting Strings

Sorting strings is one of the basic operations needed for text indexing, MapReduce, in
databases, and many other applications. It requires to order a set of strings lexicographically
like in a dictionary.

a r r a y
k i t
a r r a n g e
k a y a k
k e r n e l
k i t c h e n
k i t t e n
a r c a d e
k i t e
a b a c u s
k r y p t o n
a l p h a
a r c a i c

⇒

a b a c u s
a l p h a
a r c a d e
a r c a i c
a r r a n g e
a r r a y
k a y a k
k e r n e l
k i t
k i t c h e n
k i t e
k i t t e n
k r y p t o n

Remarkably, no publication about practical parallel string sorting existed. We focus on sort-
ing large sets of strings with modern multi-core architectures and how to best utilize shared-
memory parallelism on these machines.

L3 Cache

L2 L2 L2 L2

L2 L2 L2 L2

L3 Cache

L2 L2 L2 L2

L2 L2 L2 L2

L3 Cache

L2 L2 L2 L2

L2 L2 L2 L2

L3 Cache

L2 L2 L2 L2

L2 L2 L2 L2

R
A

M
R

A
M

R
A

M
R

A
M

2. Parallelization of Radix Sort and Multikey Quicksort

Of existing sequential string sorting algorithms, we parallelized two promising candidates: radix
sort [5, 4] and multikey quicksort [1].

2.1 Radix Sort

Radix sort [5, 4] considers only a single character at a time, counts the number of occurrences
and calculates a prefix sum, which yields the boundaries for rearranging strings for deeper sort-
ing. The algorithm is easy to parallelize, but uses only one byte of the cache line retrieved per
random access to characters.

a r r a y
k i t
a r r a n g e
k a y a k
k e r n e l
k i t c h e n
k i t t e n
a r c a d e
k i t e
a b a c u s
k r y p t o n
a l p h a
a r c a i c

Sequential

0 ff−1a k
0 6 7 0

0 0 6 6 13 1313

Parallel

0 ff−1a k
p1
p2
p3

0 2 3 0
0 2 3 0
0 2 1 0

p1
p2
p3

0 0 6 6 13 1313
0 2 6 9 13 13
0 4 6 1213 13

2.2 Multikey Quicksort

Multikey quicksort [1] partitions the string set into three parts according to the next w charac-
ters of a selected pivot string. A variant of this algorithm by Tommi Rantala [6] using w = 8
and caching of characters is generally the fastest sequential algorithm. To parallelize it, we
extended from a well-known blocking scheme used for parallel quicksort.

a r r a y
a r r a n g e
k a y a k
k e r n e l
a r c a d e
a b a c u s
a l p h a
a r c a i c
k i t
k i t c h e n
k i t t e n
k i t e
k r y p t o n

<

=

>

Sequential

= < ? > =

< = >

Parallel

? ? ? ?? ? ? ?? ? ? ? ? ? ? ? ?

W
or

k

p1 < ? = ? >

p2 < = ? > ?

p3 < ? = ? >

O
ut

pu
t <

=

>

2.3 Parallelization Toolkit

Beyond parallelizing the basic sequential algorithms’ cores we also developed a load balancing
framework to efficiently process recursive sorting steps. It uses a voluntary work sharing
method that avoids many costly atomic operations and synchronizations.

3. Super Scalar String Sample Sort

With Super Scalar String Sample Sort (S5) [2, 3] we generalize both from multikey quicksort
and from (integer) Super Scalar Sample Sort [7] by using multiple pivots. The v = 2d − 1
pivots are organized into a perfect binary search tree, which is used to classify all strings into
2v + 1 buckets using ternary comparisons. Buckets contain strings with equal prefixes, either
w or the longest common prefix of consecutive pivots, and are recursively sorted deeper.

a b a c u s
a l p h a
a r r a y
a r r a n g e
a r c a d e
a r c a i c
k a y a k
k e r n e l
k i t
k i t c h e n
k i t t e n
k i t e
k r y p t o n

prefix
2
1

2

0

2

0

ar

ab ki

0 0 1 4 8 9 12

0 1 1 5 8 12 12

0 1 2 6 8 12 13

<

=

>

< = > < = >

1 0

3.1 Parallelization and Engineering Aspects

Due to the independent classification of strings using the search tree, parallelization of S5 is
straightforward. Depending on the size of the string set, different sub-algorithms are used.

We use w = 8 and adapt the search tree size to fit into L2 cache.

The binary search tree is represented implicitly in an array and we use predicated instruc-
tions to traverse it, thus avoiding branch mispredictions.

Instead of equal comparisons at each node, we compare only after a full descent of the tree.
This enables us to interleave the classification of multiple strings, allowing the processor to
use several super scalar processing units in parallel.

4. Experimental Results

We implemented all three algorithms in C++ and show experimental results from only two plat-
forms here (see [3] for more): a 32-core, 32-HTcore Intel E5-4640 machine with 2.4 GHz and
512 GiB RAM, and a 4-core, 4-HTcore Intel i7-920 with 2.67 GHz and 12 GiB RAM.

1 8 16 32 48 64
0

2

4

6

8

10

sp
ee

du
p

71 GiB of URLs on Intel E5

1 8 16 32 48 64
0

5

10

15

20

sp
ee

du
p

4 GiB of Suffixes from Wikipedia on Intel E5

1 8 16 32 48 64
0

2

4

6

8

10

12

number of threads

sp
ee

du
p

128 GiB of Lines from GOV2 on Intel E5

1 2 3 4 5 6 7 8

1

2

3

4

number of threads

sp
ee

du
p

382 MiB of English Word Pairs on Intel i7

Super Scalar String Sample Sort
Multikey Quicksort
Radix Sort

On all inputs, Parallel Super Scalar String Sample Sort achieves the highest speedups and is,
overall, currently the best parallel string sorting implementation on these platforms.

References

[1] Jon L. Bentley and Robert Sedgewick. “Fast algorithms for sorting and searching strings”. In: SODA. 1997.
[2] Timo Bingmann and Peter Sanders. “Parallel String Sample Sort”. In: ESA. LNCS 8125. 2013.
[3] Timo Bingmann and Peter Sanders. Parallel String Sample Sort. see ArXiv e-print arXiv:1305.1157. May 2013.
[4] Juha Kärkkäinen and Tommi Rantala. “Engineering Radix Sort for Strings”. In: SPIRE. LNCS 5280. 2009.
[5] P. M. McIlroy, K. Bostic, and M. D. McIlroy. “Engineering radix sort”. In: Computing Systems 6.1 (1993).
[6] Tommi Rantala. Library of String Sorting Algorithms in C++. http://github.com/rantala/string-sorting.

Git repository accessed November 2012. 2007.
[7] Peter Sanders and Sebastian Winkel. “Super Scalar Sample Sort”. In: ESA. LNCS 3221. 2004.


